
Bread Documentation
Release 3.0.1

Alex Rasmussen

Dec 09, 2018

Contents

1 User’s Guide 3
1.1 Introduction . 3
1.2 The Format Specification Language . 4
1.3 Parsing . 7
1.4 Parsed Object Methods . 8
1.5 Creating Empty Objects . 8
1.6 Writing . 8
1.7 Examples . 9

i

ii

Bread Documentation, Release 3.0.1

Reading binary formats is a pain. bread (short for “binary read”, but pronounced like the baked good) makes that
simpler. bread understands a simple declarative specification of a binary format, which it uses to parse. It’s more
verbose, but the format is a lot easier to understand and the resulting object is a lot easier to use.

Contents 1

Bread Documentation, Release 3.0.1

2 Contents

CHAPTER 1

User’s Guide

1.1 Introduction

In this section, we’ll discuss why I wrote bread, and give a rough sense of what it can do.

1.1.1 Motivation

Here’s an example from the documentation for Python’s struct library::

record = 'raymond \x32\x12\x08\x01\x08'
name, serialnum, school, gradelevel = unpack('<10sHHb', record)

The format specification is dense, but it’s also really hard to understand. What was H again? is b signed? Am I sure
I’m unpacking those fields in the right order?

Now what happens if I have arrays of complex structures? Deeply nested structures? This can get messy really fast.

Here’s bread’s format specification for the above example::

import bread as b
record_spec = [

{"endianness" : b.LITTLE_ENDIAN},
("name", b.string(10)),
("serialnum", b.uint16),
("school", b.uint16),
("gradelevel", b.byte)

]

Here’s how to parse using that specification::

>>> parsed_record = b.parse(record, record_spec)
>>> parsed_record.name
"raymond "

(continues on next page)

3

Bread Documentation, Release 3.0.1

(continued from previous page)

>>> parsed_record.school
264

Here’s a more complicated format specification::

nested_array_struct = [
{"endianness" : b.BIG_ENDIAN},
("first", b.uint8),
("matrix", b.array(3, b.array(3, b.uint8))),
("last", b.uint8)

]

And how to parse using it::

>>> data = bytearray([42, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0xdb])
>>> nested_parsed = b.parse(data, nested_array_struct)
>>> print nested_parsed
first: 42
matrix: [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
last: 219

1.1.2 Goals (and Non-Goals)

bread was designed to read binary files into a read-only object format that could be used by other tools. It’s not really
meant for writing binary data at this point (although I can imagine future versions being able to do something like that
if I find the need).

I wrote bread with ease of use, rather than speed of execution, as a first-order concern. That’s not to say that bread
is really slow, but if you’re writing something that analyzes gigabytes of binary data and speed is your main concern,
you may want to just roll your own optimized format reader in something like C and call it a day.

1.2 The Format Specification Language

bread reads binary data according to a format specification. Format specifications are just lists. Each element in
the list is called a field descriptor. Field descriptors describe how to consume a piece of binary data from the input,
usually to create a field in the resulting object. Field descriptors are consumed from the format specification one at a
time until the entire list has been consumed.

1.2.1 Field Descriptors

Most field descriptors will consume a certain amount of binary data and produce a value of a certain basic type.

Integers

intX(num_bits, signed) - the next num_bits bits represent an integer. If signed is True, the integer is
interpreted as a signed, twos-complement number.

For convenience and improved readability, the following shorthands are defined:

4 Chapter 1. User’s Guide

Bread Documentation, Release 3.0.1

Field Descriptor Width (Bits) Signed
bit 1 no
semi_nibble 2 no
nibble 4 no
byte 8 no
uint8 8 no
uint16 16 no
uint32 32 no
uint64 64 no
int8 8 yes
int16 16 yes
int32 32 yes
int64 64 yes

Strings

string(length, encoding) - the next length bytes represent a string of the given length. You can pick an
encoding for the strings to encode and decode in; the default is utf-8.

Booleans

boolean - the next bit represents a boolean value. 0 is False, 1 is True

Enumerations

enum(length, values, default=None) - the next length bits represent one of a set of values, whose
values are given by the dictionary values. If default is specified, it will be returned if the bits do not correspond
to any value in values. Otherwise, it raises a ValueError.

Here is an example of a 2-bit field representing a card suit:

import bread as b

("suit", b.enum(2, {
0: "diamonds",
1: "hearts",
2: "spades",
3: "clubs"

}))

Arrays

array(count, field_or_struct) - the next piece of data is count occurrences of field_or_struct
which, as the name might imply, can be either a field (including another array) or a format specification.

Here’s an example way of representing a deck of playing cards:

import bread as b

A card is made up of a 2-bit suit and a 4-bit card number

(continues on next page)

1.2. The Format Specification Language 5

Bread Documentation, Release 3.0.1

(continued from previous page)

card = [
("suit", b.enum(2, {

0: "diamonds",
1: "hearts",
2: "spades",
3: "clubs"

})),
("number", b.intX(4))]

A deck consists of 52 cards, for a total of 312 bits or 39 bytes of data

deck = [("cards", b.array(52, card))]

1.2.2 Field Options

A dictionary of field options can be specified as the last argument to any field. A dictionary of global field options can
also be defined at the beginning of the format spec (before any fields). Options defined on fields override these global
options.

The following field options are defined:

• str_format - the function that should be used to format a field in the structure’s human-readable representa-
tion. For example:

>>> import bread as b

Format spec without str_format ...
>>> simple_spec = [('addr', b.uint8)]
>>> parsed_data = b.parse(bytearray([42]), simple_spec)
>>> print parsed_data
addr: 42

... and with str_format
>>> simple_spec_hex = [('addr', b.uint8, {"str_format": hex})]
>>> parsed_data = b.parse(bytearray([42]), simple_spec_hex)
>>> print parsed_data
addr: 0x2a

• endianness - for integer types, the endianness of the bytes that make up that integer. Can either be
LITTLE_ENDIAN or BIG_ENDIAN. Default is little-endian.

A simple example:

endianness_test = [
("big_endian", b.uint32, {"endianness" : b.BIG_ENDIAN}),
("little_endian", b.uint32, {"endianness" : b.LITTLE_ENDIAN}),
("default_endian", b.uint32)]

data = bytearray([0x01, 0x02, 0x03, 0x04] * 3)
test = b.parse(data, endianness_test)

>>> test.big_endian == 0x01020304
True
>>> test.little_endian == 0x04030201
True

(continues on next page)

6 Chapter 1. User’s Guide

Bread Documentation, Release 3.0.1

(continued from previous page)

>>> test.default_endian == test.little_endian
True

• offset - for integer types, the amount to add to the number after it has been parsed. Specifying a negative
number will subtract that amount from the number.

1.2.3 Conditionals

Conditionals allow the format specification to branch based on the value of a previous field. Conditional field descrip-
tors are specified as follows:

(CONDITIONAL "field_name", options)

where field_name is the name of the field whose value determines the course of the conditional, and options is
a dictionary giving format specifications to evaluate based on the field’s value.

This is perhaps best illustrated by example:

import bread as b

There are three kinds of widgets: type A, type B and type C. Each has
its own format spec.

widget_A = [...]
widget_B = [...]
widget_C = [...]

A widget may be of any of the three types, determined by its type field

widget = [
("type", b.string(1)),
(b.CONDITIONAL, "type", {

"A": widget_A,
"B": widget_B,
"C": widget_C

})]

1.2.4 Padding

padding(num_bits) - indicates that the next num_bits bits should be ignored. Useful in situations where only
the first few bits of a byte are meaningful, or where the format skips multiple bits or bytes.

1.3 Parsing

Currently, bread can parse data contained in strings, byte arrays, or files. In all three cases, data parsing is done with
the function parse(data, spec).

An example of parsing files:

import bread as b

format_spec = [...]

(continues on next page)

1.3. Parsing 7

Bread Documentation, Release 3.0.1

(continued from previous page)

with open('raw_file.bin', 'rb') as fp:
parsed_obj = b.parse(fp, format_spec)

An example with byte arrays and strings:

import bread as b

format_spec = [("greeting", b.string(5))]

bytes = bytearray([0x68, 0x65, 0x6c, 0x6c, 0x6f])
string = "hello"

parsed_bytes = b.parse(bytes, format_spec)
parsed_string = b.parse(string, format_spec)

1.4 Parsed Object Methods

Objects produced by bread can produce JSON representations of themselves. Calling the object’s as_json()
method will produce its data as a JSON string.

Objects produced by bread can also produce representations of themselves as Pythonic list s, dict s, etc. Calling
the object’s as_native() method will produce its data in this form.

1.5 Creating Empty Objects

Sometimes, you want to write a binary format without having to read anything first. To do this in Bread, you can use
the function new(spec).

Here’s an example of new() in action:

format_spec = [("greeting", b.string(5)),
("age", b.nibble)]

empty_struct = b.new(format_spec)

empty_struct.greeting = 'hello'
empty_struct.age = 0xb

output_bytes = b.write(empty_struct)

1.6 Writing

New in version 1.2.

write(parsed_obj, spec, filename=None)

bread allows you to parse data, modify it, and then write the modified version back out again.

An example of reading, modifying and writing a file:

8 Chapter 1. User’s Guide

Bread Documentation, Release 3.0.1

import bread as b

format_spec = [
('x', b.boolean),
('y', b.uint16)

]

with open('raw_file.bin', 'rb') as fp:
parsed_obj = b.parse(fp, format_spec)

parsed_obj.y = 37

When called without a 'filename' argument, write() returns the raw
written data as a bytearray

modified_data = write(parsed_obj, format_spec)

When called with a filename, write() writes the data to the named file
write(parsed_obj, format_spec, filename='raw_file.bin.modified')

1.7 Examples

1.7.1 NSF Headers

The following parses the header for an NES Sound Format (NSF) file and prints it in a human-readable format:

import bread as b
import sys

def hex_array(x):
return str(map(hex, x))

nsf_header = [
('magic_number', b.array(5, b.byte),
{"str_format": hex_array}),

('version', b.byte),
('total_songs', b.byte),
('starting_song', b.byte),
('load_addr', b.uint16, {"str_format": hex}),
('init_addr', b.uint16, {"str_format": hex}),
('play_addr', b.uint16, {"str_format": hex}),
('title', b.string(32)),
('artist', b.string(32)),
('copyright', b.string(32)),
('ntsc_speed', b.uint16),
('bankswitch_init', b.array(8, b.byte), {"str_format": hex_array}),
('pal_speed', b.uint16),
('ntsc', b.boolean),
('pal', b.boolean),
('ntsc_and_pal', b.boolean),
(b.padding(6)),
('vrc6', b.boolean),
('vrc7', b.boolean),
('fds', b.boolean),

(continues on next page)

1.7. Examples 9

http://kevtris.org/nes/nsfspec.txt

Bread Documentation, Release 3.0.1

(continued from previous page)

('mmc5', b.boolean),
('namco_106', b.boolean),
('fme07', b.boolean),
(b.padding(2)),
(b.padding(32))

]

with open(sys.argv[1], 'r') as fp:
header = b.parse(fp, nsf_header)
print header

Here are a couple of examples of its output:

$ python nsf_header.py Mega_Man_2.nsf

magic_number: ['0x4e', '0x45', '0x53', '0x4d', '0x1a']
version: 1
total_songs: 24
starting_song: 1
load_addr: 0x8000
init_addr: 0x8003
play_addr: 0x8000
title: Mega Man 2
artist: Ogeretsu,Manami,Ietel,YuukiChan
copyright: 1988,1989 Capcom Co. Ltd.
ntsc_speed: 16666
bankswitch_init: ['0x0', '0x0', '0x0', '0x0', '0x0', '0x0', '0x0', '0x0']
pal_speed: 0
ntsc: False
pal: False
ntsc_and_pal: False
vrc6: False
vrc7: False
fds: False
mmc5: False
namco_106: False
fme07: False

$ python nsf_header.py Super_Mario_Bros.nsf

magic_number: ['0x4e', '0x45', '0x53', '0x4d', '0x1a']
version: 1
total_songs: 18
starting_song: 1
load_addr: 0x8dc4
init_addr: 0xbe34
play_addr: 0xf2d0
title: Super Mario Bros.
artist: Koji Kondo
copyright: 1985 Nintendo
ntsc_speed: 16666
bankswitch_init: ['0x0', '0x0', '0x0', '0x0', '0x1', '0x1', '0x1', '0x1']
pal_speed: 0
ntsc: False
pal: False
ntsc_and_pal: False
vrc6: False

(continues on next page)

10 Chapter 1. User’s Guide

Bread Documentation, Release 3.0.1

(continued from previous page)

vrc7: False
fds: False
mmc5: False
namco_106: False
fme07: False

1.7. Examples 11

	User’s Guide
	Introduction
	The Format Specification Language
	Parsing
	Parsed Object Methods
	Creating Empty Objects
	Writing
	Examples

